关于角的定理

角在几何学中,是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。一般的角会假设在欧几里得平面上,但在欧几里得几何中也可以定义角。角在几何学和三角学中有着广泛的应用。

1.过两点有且只有一条直线

2.两点之间线段最短

3.同角或等角的补角相等

4.同角或等角的余角相等

5.过一点有且只有一条直线和已知直线垂直

6.直线外一点与直线上各点连接的所有线段中,垂线段最短

7.平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8.如果两条直线都和第三条直线平行,这两条直线也互相平行

9.同位角相等,两直线平行

10.内错角相等,两直线平行

11.同旁内角互补,两直线平行

12.两直线平行,同位角相等

13.两直线平行,内错角相等

14.两直线平行,同旁内角互补

15.定理 三角形两边的和大于第三边

16.推论 三角形两边的差小于第三边

17.三角形内角和定理三角形三个内角的和等于°

18.推论1直角三角形的两个锐角互余

19.推论2三角形的一个外角等于和它不相邻的两个内角的和

20.推论3三角形的一个外角大于任何一个和它不相邻的内角

21.全等三角形的对应边、对应角相等

22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23.角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25.边边边公理(SSS) 有三边对应相等的两个三角形全等

26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27.定理1 在角的平分线上的点到这个角的两边的距离相等

28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29.角的平分线是到角的两边距离相等的所有点的集合

30.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31.推论等腰三角形顶角的平分线平分底边并且垂直于底边

32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33.推论等边三角形的各角都相等,并且每一个角都等于60 °

34.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35.推论1三个角都相等的三角形是等边三角形

36.推论 2 有一个角等于°的等腰三角形是等边三角形

37.在直角三角形中,如果一个锐角等于°那么它所对的直角边等于斜边的一半

38.直角三角形斜边上的中线等于斜边上的一半

39.定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40.逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42.定理1关于某条直线对称的两个图形是全等形

43.定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44.定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45.逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2那么这个三角形是直角三角形