赫尔德不等式

赫尔德不等式(Hölder's inequality)是一种用于计算多个非负实数的乘积的不等式。设 $a_1,a_2,\dots,a_n$ 和 $b_1,b_2,\dots,b_n$ 是 $2n$ 个非负实数,并且满足 $p,q > 1$,以及 $\frac{1}{p} + \frac{1}{q} = 1$,则赫尔德不等式可以表示为:

$$(a_1 b_1 + a_2 b_2 + \cdots + a_n b_n)^{\frac{1}{p}} \leq \left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}$$

等号成立当且仅当 $a_i b_i = k\left(\frac{a_i^p}{p} + \frac{b_i^q}{q}\right)$ 对于某个常数 $k$ 和所有的 $i$ 成立。

赫尔德不等式是一种经典的不等式,在各种数学问题中都有广泛应用。例如,在概率论中,赫尔德不等式可以用于证明马尔科夫不等式和切比雪夫不等式。在分析学中,赫尔德不等式可以用于证明伯努利不等式和琴声不等式。在几何学中,赫尔德不等式可以用于证明三角形不等式。因此,赫尔德不等式是数学中一个非常有用的工具。