两个平面平行,在一个平面内的任意一条直线平行于另外一个平面。两个平行平面,分别和第三个平面相交,交线平行。两个平面平行,和一个平面垂直的直线必垂直于另外一个平面。
定理1:两个平面平行,在一个平面内的任意一条直线平行于另外一个平面。 定理2:两个平行平面,分别和第三个平面相交,交线平行。 定理3:两个平面平行,和一个平面垂直的直线必垂直于另外一个平面。(判定定理1的逆定理) 推论:两个平行平面的垂线平行或重合。 定理4:三个平行平面截两条直线,形成的对应线段成...
如果两个平面垂直于同一条直线,那么这两个平面平行。如果一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行。如果一个平面内有两条相交直线分别与另一个平面内的两条相交直线平行,那么这两个平面平行。
...
如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内等。
面面垂直的定义:若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。 面面垂直性质定理 1.如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。 2.如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。 3.如果两个...
一条线与另一条线相交并成直角,这两条直线互相垂直。通常用符号“⊥”表示。
①在同一平面内,过一点有且只有一条直线与已知直线垂直。垂直一定会出现90°。 ②连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。 ③点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。...
在同一平面内,永不相交的两条直线叫做平行线。平行线一定要在同一平面内定义,不适用于立体几何,比如异面直线,不相交,也不平行。
...
1968年,美国科学史研究者罗伯特·莫顿(Robert K. Merton)提出这个术语用以概括一种社会心理现象:“相对于那些不知名的研究者,声名显赫的科学家通常得到更多的声望即使他们的成就是相似的,同样地,在同一个项目上,声誉通常给予那些已经出名的研究者,例如,一个奖项几...
2002年诺贝尔经济学奖获奖者,心理学家丹尼尔·卡纳曼(Daniel Kahneman)经过深入研究,发现我们对体验的记忆由两个因素决定:高峰(无论是正向的还是负向的)时与结束时的感觉,这就是峰终定律(Peak- End Rule)。这条定律基于我们潜意识总结体验的特点:我们对一项事物...
正态分布的主要特征 1、集中性:正态曲线的高峰位于正中央,即均数所在的位置。 2、对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。 3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。 4、正态分布有两个参数,即均数μ和标准差σ,可记作N(&mu...
条件概率P(B|A)具有概率的三条基本性质:非负性、规范性、可列可加性。
...
事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为:P(A|B),读作“在B的条件下A的概率”。
...